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The performance of different propensity
score methods for estimating marginal
hazard ratios
Peter C. Austina,b,c*†

Propensity score methods are increasingly being used to reduce or minimize the effects of confounding when
estimating the effects of treatments, exposures, or interventions when using observational or non-randomized
data. Under the assumption of no unmeasured confounders, previous research has shown that propensity score
methods allow for unbiased estimation of linear treatment effects (e.g., differences in means or proportions).
However, in biomedical research, time-to-event outcomes occur frequently. There is a paucity of research into
the performance of different propensity score methods for estimating the effect of treatment on time-to-event
outcomes. Furthermore, propensity score methods allow for the estimation of marginal or population-average
treatment effects. We conducted an extensive series of Monte Carlo simulations to examine the performance
of propensity score matching (1:1 greedy nearest-neighbor matching within propensity score calipers), stratifi-
cation on the propensity score, inverse probability of treatment weighting (IPTW) using the propensity score,
and covariate adjustment using the propensity score to estimate marginal hazard ratios. We found that both
propensity score matching and IPTW using the propensity score allow for the estimation of marginal hazard
ratios with minimal bias. Of these two approaches, IPTW using the propensity score resulted in estimates with
lower mean squared error when estimating the effect of treatment in the treated. Stratification on the propensity
score and covariate adjustment using the propensity score result in biased estimation of both marginal and con-
ditional hazard ratios. Applied researchers are encouraged to use propensity score matching and IPTW using
the propensity score when estimating the relative effect of treatment on time-to-event outcomes. Copyright ©
2012 John Wiley & Sons, Ltd.

Keywords: propensity score; survival analysis; inverse probability of treatment weighting (IPTW); Monte Carlo
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1. Introduction

Observational studies are increasingly being used to estimate the effects of treatments, interventions,
and exposures on outcomes. These studies allow for the examination of treatment effects in settings in
which randomized controlled trials (RCTs) may be unethical or impractical. Furthermore, observational
studies allow for the study of treatment efficacy outside of the tightly controlled environment of an RCT,
allow for the inclusion of subjects who may have been excluded from RCTs, and allow for the study of
rare outcomes and adverse events for which RCTs may have inadequate statistical power. The advantage
of RCTs is that random allocation of treatment assignment allows one to obtain an unbiased estimate of
the average treatment effect [1]. This is because there will, on average, be no systematic differences in
baseline covariates between treatment groups. In contrast, in observational studies, treatment allocation
is frequently influenced by subject characteristics. Therefore, there often exist systematic differences
between treatment groups in observational studies. We must use statistical methods to remove or min-
imize the effect of this confounding so that valid inferences on treatment effect can be drawn from
observational studies.
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Propensity score methods are increasingly being used to reduce or minimize the confounding that
occurs frequently in observational studies of the effect of treatment on outcomes. The propensity score
is the probability of treatment assignment conditional on measured baseline covariates [2]. There are
four ways of using the propensity score to reduce confounding: matching on the propensity score,
stratification on the propensity score, inverse probability of treatment weighting (IPTW) using the
propensity score, and covariate adjustment using the propensity score. These methods are often used
in the biomedical literature [3, 4].

Conditioning on the propensity score results in unbiased estimates of linear treatment effects [2]. Thus,
when outcomes are continuous, conditioning on the propensity score allows for unbiased estimation of
differences in means. However, in biomedical research, outcomes are commonly binary or time to event
in nature, rather than continuous [5]. When outcomes are binary, we can estimate the effect of treatment
using the risk difference (difference in proportions or absolute risk reduction) (along with the associated
number needed to treat, which is the reciprocal of the absolute risk reduction), the relative risk, and the
odds ratio. Several studies have examined the performance of different propensity score methods for
estimating treatment effects when outcomes are binary [6–9]. Although propensity score methods have
frequently been used in the analysis of time-to-event outcomes, there is a paucity of research examining
the relative performance of different propensity score methods for estimating hazard ratios.

A conditional effect is the average effect, at the subject level, of moving a subject from untreated
to treated. The regression coefficient for a treatment assignment indicator variable from a multivariable
regression model is an estimate of a conditional or adjusted effect. In contrast, a marginal effect is the
average effect, at the population level, of moving an entire population from untreated to treated [10].
Linear treatment effects (differences in means and differences in proportions) are collapsible: the con-
ditional and marginal treatment effects will coincide. However, when outcomes are binary or time to
event in nature, the odds ratio and the hazard ratio are not collapsible [11]. Rosenbaum has noted that
propensity score methods allow one to estimate marginal, rather than conditional, effects [12]. There is
a paucity of research into the performance of different propensity score methods to estimate marginal
treatment effects.

The objective of the current study is to examine the ability of different propensity score methods to
estimate marginal and conditional hazard ratios when outcomes are time to event in nature. The paper
is structured as follows. In Section 2, we describe different propensity score methods and how they can
be used to estimate hazard ratios for survival outcomes. In Section 3, we describe the design and results
of an extensive series of Monte Carlo simulations to compare the performance of different propensity
score methods to estimate hazard ratios. In Section 4, we summarize our findings and place them in the
context of the existing literature.

2. Propensity score methods and survival outcomes

We use the following notation throughout this section. Let Z be an indicator variable denoting treatment
status (Z D 1 for active treatment of interest and Z D 0 for the control treatment), whereas e denotes
the estimated propensity score.

2.1. Matching on the propensity score

Matching on the propensity score entails forming matched sets of treated and untreated subjects who
have a similar value of the propensity score [13]. The most common implementation of propensity score
matching is pair matching or 1:1 matching in which matched pairs of treated and untreated subjects are
formed. In the current study, we used greedy nearest-neighbor matching within specified caliper widths
to form pairs of treated and untreated subjects matched on the logit of the propensity score [13]. We used
calipers of width equal to 0.2 of the standard deviation of the logit of the propensity score as this caliper
width has been found to perform well in a wide variety of settings [14].

Once a propensity-score-matched sample had been formed, we estimated the effect of treatment on
survival using three different methods. First, we used a Cox proportional hazards regression model to
regress survival on an indicator variable denoting treatment status. We used model-based standard errors
to estimate 95% confidence intervals. Second, we fitted the same model as before; however, we obtained
a robust sandwich estimate of the variance of the regression coefficient that accounted for the clustering
within matched sets [15]. Finally, we fitted a univariate Cox model as before; however, this model
stratified on matched sets, thereby allowing the baseline hazard function to vary across matched sets.

2838

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 2837–2849



P. C. AUSTIN

We carried this out to account for the potential homogeneity of outcomes within matched sets.
Cummings, McKnight, and Greenland proposed the use of stratification on matched sets to account
for matched cohort designs with time-to-event outcomes [16]. We will refer to these three models as the
naïve Cox model, the robust Cox model, and the stratified Cox model, respectively.

2.2. Stratification on the propensity score

Stratification (or subclassification) on the propensity score stratifies the entire sample into mutually
exclusive subclasses on the basis of the propensity score. A common approach is to define the sub-
classes using specified quantiles of the propensity score. Using the quintiles of the estimated propensity
score to divide the sample into five, approximately equally sized, groups has been shown to eliminate
approximately 90% of the bias due to measured confounding variables when estimating a linear treat-
ment effect [2,17,18]. We used stratification on the quintiles of the propensity score in the current study
given its popularity in the applied literature.

When estimating a linear treatment effect (e.g., a difference in means or difference in proportions),
one can estimate stratum-specific treatment effects and then pool or average these stratum-specific effects
across the strata [2, 17]. We examined three modifications to this approach for estimating hazard ratios
when outcomes are time to event in nature. Each method was based on a Cox regression model with
survival as the outcome variable. In the first method, we included two explanatory variables in the
Cox model: an indicator variable denoting treatment status and a categorical variable denoting propen-
sity score strata (as a five-level categorical variable). In the second method, we fit five stratum-specific
univariate Cox regression models in which survival was regressed on an indicator variable denoting treat-
ment status. We then pooled or averaged the five log-hazard ratios to estimate an overall treatment effect.
Third, we fit a univariate Cox model in which we regressed survival on an indicator variable denoting
treatment status. The model stratified on the five propensity score strata, thereby allowing the baseline
hazard ratio to vary across the propensity score strata. We refer to these three methods as stratification
(adjusted), stratification (pooled), and stratification (stratified), respectively.

2.3. Inverse probability of treatment weighting using the propensity score

The IPTWs are defined as .Z=e/C Œ.1�Z/=.1� e/� [19]. Weighting the sample using these weights
results in a weighted synthetic sample in which observed baseline covariates are not confounded with
treatment assignment. Using these weights allows one to estimate the average treatment effect (ATE).
Using weights equal toZC Œe.1�Z/=.1� e/� allows one to estimate the average treatment effect in the
treated (ATT) [20]. In the weighted sample (weighted using either the ATE weights or the ATT weights),
we used a Cox regression model to regress survival on an indicator variable denoting treatment status
and used a robust variance estimator [15, 21].

2.4. Covariate adjustment using the propensity score

Rosenbaum and Rubin proposed covariate adjustment using the propensity score in the context of
estimating linear treatment effects for continuous outcomes [2]. Using this approach, we regress the
outcome on two covariates: an indicator variable denoting treatment status and the propensity score.
The regression coefficient associated with the treatment selection indicator represents the effect of treat-
ment. In the current study, we used Cox regression to regress survival time on these two variables. The
regression coefficient for the treatment status indicator is the estimated log-hazard ratio.

3. Monte Carlo simulations

We used a series of Monte Carlo simulations to examine the relative performance of different propensity
score methods to estimate hazard ratios. Our primary focus was on estimating marginal or population-
average hazard ratios. However, as a secondary objective, we also examined estimation of conditional
hazard ratios.

3.1. Monte Carlo simulations—methods

We simulated data for a setting in which there were 10 baseline covariates (X1–X10). We simulated
these covariates from independent standard normal distributions. Of these 10 covariates, seven affected
treatment selection (X1–X7/, whereas seven affected the outcome (X4–X10). Furthermore, we allowed
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covariates to have a weak, moderate, strong, or very strong effect on treatment selection or outcome. For
each subject, we determined the probability of treatment selection from the following logistic model:
logit.pi /D ˛0;treatC˛Wx1C˛Mx2C˛Sx3C˛Wx4C˛Mx5C˛Sx6C˛VSx7. We selected the intercept
of the treatment selection model .˛0;treat/ so that the proportion of subjects in the simulated sample that
were treated was fixed at the desired proportion. The regression coefficients ˛W, ˛M, ˛S, and ˛VS were
set to log(1.25), log(1.5), log(1.75), and log(2), respectively. These were intended to denote weak, mod-
erate, strong, and very strong treatment assignment affects. For each subject, we generated treatment
status from a Bernoulli distribution with subject-specific parameter pi .

We then generated a time-to-event outcome for each subject using a data-generating process for time-
to-event outcomes described by Bender et al. [22]. For each subject, we defined the linear predictor as
LPD ˇtreatZC˛Wx4C˛Mx5C˛Sx6C˛VSx7C˛Wx8C˛Mx9C˛Sx10. For each subject, we generated a
random number from a standard uniform distribution: u� U.0; 1/. We generated a survival or event time

for each subjects as follows: � log.u/=
�
�eLP

�1=�
. We set � and � to be equal to 0.00002 and 2, respec-

tively. The use of this data-generating process results in a conditional treatment effect, with a conditional
hazard ratio of exp(ˇtreat/. However, we wanted to generate data in which there was a specified marginal
hazard ratio. To do so, we modified previously described data-generating processes for generating data
with a specified marginal odds ratio or risk difference [23, 24]. We used an iterative process to deter-
mine the value of ˇtreat (the conditional log-hazard ratio) that induced the desired marginal hazard ratio.
Briefly, using the aforementioned conditional model, we simulated a time-to-event outcome for each
subject, first assuming that the subject was untreated and then assuming that the subject was treated. In
the sample consisting of both potential outcomes (survival or event time under lack of treatment and
survival or event time under treatment), we regressed the survival outcome on an indicator variable
denoting treatment status. The coefficient for the treated status indicator denotes the log of the marginal
hazard ratio. We repeated this process 1000 times to obtain an estimate of the log of the marginal hazard
ratio associated with a specific value of ˇtreat in our conditional outcome model. We then employed a
bisection approach to determine the value of ˇtreat that resulted in the desired marginal hazard ratio. We
applied this process twice: first to determine the value of ˇtreat that induced a desired marginal hazard
ratio in the overall population. We will describe this as the ATE in the population. Second, we repeated
the process but used only subjects who were ultimately assigned to the treatment when estimating the
marginal hazard ratio (i.e., we fit the Cox model on the dataset of potential outcomes restricted to those
subjects who were ultimately treated). We thus determined the value of ˇtreat that induced a desired
marginal hazard ratio in the treated population. We describe this as the ATT. We acknowledge that
describing these hazard ratios as average treatment effects is a slight abuse of convention as they do not
explicitly involve taking expectations of differences in potential outcomes. However, our intent was to
describe the average effect in the entire population or in the population of treated subjects.

We allowed the following factors to vary in our Monte Carlo simulations: the percentage of subjects
that were treated (5%, 10%, and 25%) and the true marginal hazard ratio (0.8, 1, 1.10, 1.25, 1.50, 1.75,
and 2). We thus examined 21 scenarios (three treatment prevalences � seven marginal hazard ratios). For
each true marginal hazard ratio, we considered both the ATE and ATT hazard ratios. In each scenario,
we simulated 10,000 datasets, each consisting of 10,000 subjects.

Within each simulated dataset, we did the following: we estimated the propensity score using a
logistic regression model to regress treatment status on the seven baseline covariates that affected the
outcome. We selected this approach to variable selection for the propensity score model, as it has been
shown to result in better estimation compared with selecting only those variables that affect treatment
selection [25].

In each of the 10,000 simulated datasets for each scenario, we estimated the log-hazard ratio and
its standard error using the methods described in Section 2. Let ™i denote the estimated log-hazard
ratio obtained from the i th simulated dataset using a given method, whereas ™ denotes the true log-
marginal hazard ratio. We estimated the mean treatment effect (on the log-hazard scale), bias, and mean
squared error (MSE) as N� D .1=10000/

P10000
iD1 �i , Bias D .1=10000/

P10000
iD1 .�i � �/, and MSE D

.1=10000/
P10000
iD1 .�i � �/

2, respectively. We defined relative bias as 100 � .Bias=�/. We also exam-
ined the accuracy with which the estimated standard error of the estimated log-hazard ratio estimated the
sampling variability of the estimated log-hazard ratio. To do so, we compared two estimates. First, within
each of the 10,000 simulated datasets, we estimated the standard error of estimated log-hazard ratio; we
then determined the mean standard error of the log-hazard ratio across the 10,000 simulated datasets.
Second, we determined the standard deviation of the estimated log-hazard ratios across the 10,000
simulated datasets. The first quantity estimates the mean standard error, whereas the second quantity
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estimates the sampling variability of the log-hazard ratio. We then determined the ratio of these two
quantities. If the ratio equals 1, then the estimated standard error of the log-hazard ratio is correctly esti-
mating the sampling variability of the estimated log-hazard ratio. Finally, within each simulated dataset
and for each method, we computed the 95% confidence interval for the estimated hazard ratio. We then
determined the mean length of the estimated 95% confidence intervals as well as the proportion of 95%
confidence intervals that covered the true hazard ratio that was used in the data-generating process.

3.2. Monte Carlo simulations—results

When the proportion of subjects who were treated was 0.05, 0.10, and 0.25, then the average number
of matched pairs formed across the 10,000 simulated samples for each scenario was 499.9, 993.4,
and 2357.4, respectively. Thus, we matched approximately 100%, 99.3%, and 94.3% of treated sub-
jects to an untreated subject. Thus, the matched methods should have minimal bias due to incomplete
matching [13].

Figure 1 shows the exponential of the mean estimated treatment effect
�
exp

�
N�
��

, whereas Figure 2
shows the relative bias in estimating the log-marginal-hazard ratios (note that the relative biases are not
reported for the scenarios with a true hazard ratio of 1 as the log-hazard ratio is 0). In Figure 1, we have
added a solid diagonal line of unit slope. Deviation from this diagonal line indicates biased estimation
of marginal hazard ratios. The use of 10,000 simulated datasets resulted in precise estimation of the
log-hazard ratio. Across the 21 scenarios and the different estimation methods, the maximum standard
error of the estimated log-hazard ratio was 0.00125. Both bias and relative bias tended to be substantial
for covariate adjustment using the propensity score and for the three stratification methods. When we
use matching, the naïve and robust methods resulted in the same relative bias as they are both marginal
models of the same functional form and resulted in the same estimate of the regression coefficient for
the log-hazard ratio. The method that stratified on matched pairs resulted in substantially greater bias
than did the other two matching methods. IPTW, using either set of weights, and two of the matching
methods (naïve and robust) resulted in estimates with minimal bias.

The preceding results identify several issues that must be addressed before proceeding to examina-
tion of further results. The naïve Cox model and the robust Cox model in the propensity-score-matched
sample are marginal models—they estimate population-average effects. Similarly, the IPTW method
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Figure 1. Estimated hazard ratio using different propensity score methods. IPTW, inverse probability of
treatment weight; ATE, average treatment effect; ATT, average treatment effect in the treated.
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Figure 2. Relative bias of different propensity score methods for estimating marginal hazard ratios. IPTW,
inverse probability of treatment weight; ATE, average treatment effect; ATT, average treatment effect in

the treated.

estimates marginal effects. The high biases observed for covariate adjustment using the propensity
score, stratification using the propensity score, and the Cox model that stratified on matched pairs in the
propensity-score-matched sample highlight that these methods do not estimate marginal effects. Instead,
they result in conditional measures of effect—they estimate conditional hazard ratios. That this is true for
covariate adjustment using the propensity score is obvious, and it did not require simulations to illustrate
this fact. That it is true for the different stratified approaches may be less obvious. With the stratification
(adjusted) approach, one is fitting a conditional model that estimates the effect of treatment selection after
adjusting for the propensity score strata (as a categorical variable). The stratification (strata) approach fits
a univariate Cox model that stratifies on the propensity score strata, thereby allowing the baseline hazard
function to vary across the propensity score strata. However, one is still deriving estimates of treatment
effect from a model that conditions on the strata. The stratification (pooled) approach fits stratum-specific
univariate Cox models. However, one then pools the stratum-specific hazard ratios. Pooling or averaging
these stratum-specific estimates results in a smoothed estimate that represents an adjusted or conditional
effect. Thus, none of these approaches allows one to estimate a marginal hazard ratio. Similarly, the
model fit in the propensity-score-matched sample that stratified on the matched pairs is a conditional
model that conditions on the matched pairs. Thus, none of these methods results in marginal estimates
of treatment effect.

Our data-generating process employed a conditional Cox model to generate outcomes. We selected the
conditional log-hazard ratio so as to induce a specified marginal hazard ratio. We examined the relative
bias of covariate adjustment using the propensity score, stratification on the propensity score, and the
matched analysis that stratified on matched pairs when estimating the underlying conditional hazard ratio
that was used in the data-generating process. Because this set of propensity score methods resulted in
biased estimation of the underlying marginal hazard ratio, it is important to examine whether this set of
methods also result in biased estimation of the conditional hazard ratio used in the data-generating pro-
cess. Figure 3 shows the relative bias for estimating the conditional hazard ratio. Each method resulted
in moderate bias in estimating the conditional hazard ratio used in the data-generating process. In
theory, there are multiple conditional effects. Indeed, there is potentially a different conditional effect for
every set of covariates for which one adjusts in a regression model. Thus, although these methods allow
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Figure 3. Relative bias of different propensity score methods for estimating conditional hazard ratios.

estimation of conditional effects, it is unclear which conditional effect they are estimating. In particular,
the conditional effect that is being estimated does not appear to coincide with the conditional effect
employed in the data-generating process.

For the reasons noted earlier, for the remainder of this section, we focus on the performance of the two
IPTW methods (ATE and ATT weights), the naïve Cox model in the propensity-score-matched sample,
and the robust Cox model in the propensity-score-matched sample for estimating marginal hazard ratios.

In Figure 4, we report, for each estimation method, the ratio of the mean standard error of the
estimated log-hazard ratio across the 10,000 simulated datasets (i.e., in each simulated dataset, we
obtained an estimated standard error of the estimated treatment effect; we then averaged these across the
10,000 simulated datasets) to the standard deviation of the estimated log-hazard ratios across the 10,000
simulated datasets (i.e., in each dataset, we obtained an estimated log-hazard ratio; we then estimated
the sampling variability of these estimated log-hazard ratio). This analysis indicates whether, for a given
estimation method, the estimated standard error of the estimated treatment effect is correctly estimating
the sampling variability of the estimated treatment. This ratio tended to be larger for the naïve Cox model
in the matched sample than for the robust Cox model in the matched sample. The mean ratio for the naïve
matched method was 1.28 across the 21 scenarios, whereas it was 1.09 for the robust matched method.
Thus, ignoring the matched nature of the propensity-score-matched sample resulted in estimates of the
standard error of the log-hazard ratio that was inflated by an average of 28% (i.e., the naïve matched
method resulted in estimates of standard error that were, on average, 28% too large, whereas the robust
matched approach resulted in estimates of standard error that were, on average, 9% too large). The mean
ratios for the IPTW methods were 1.0 and 1.40 when using ATE and ATT weights, respectively.

Figure 5 shows coverage rates of 95% confidence intervals. Because of our use of 10,000 iterations
per scenario in our Monte Carlo simulations, any confidence intervals whose empirical coverage rate
is less than 0.9457 or greater than 0.9543 would be statistically significantly different from 0.95, using
a standard test based on the normal approximation to the binomial distribution. In general, coverage
rates of 95% confidence intervals were suboptimal. Coverage rates of 95% confidence intervals tended
to improve as the proportion of subjects who were treated increased. Figure 6 shows the mean length
of the estimated 95% confidence intervals. Among the three methods that estimated the ATT, the naïve
matched approach tended to result in estimated 95% confidence intervals that were slightly wider than
those from the other two approaches. The differences between these three methods decreased as the
proportion of subjects who were treated increased.
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Figure 4. Ratio of mean standard error to standard deviation of estimated log-hazard ratios. IPTW, inverse
probability of treatment weight; ATE, average treatment effect; ATT, average treatment effect in the treated.

0.
85

0.
90

0.
95

1.
00

True marginal hazard ratio

C
ov

er
ag

e 
ra

te
s 

of
 9

5%
 C

Is

Prevalence of exposure: 5% (Expected number of treated: 500)

0.
85

0.
90

0.
95

1.
00

True marginal hazard ratio

C
ov

er
ag

e 
ra

te
s 

of
 9

5%
 C

Is

Prevalence of exposure: 10% (Expected number of treated: 1000)

0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.
85

0.
90

0.
95

1.
00

True marginal hazard ratio

C
ov

er
ag

e 
ra

te
s 

of
 9

5%
 C

Is

Prevalence of exposure: 25% (Expected number of treated: 2500)

Matched − Naive
Matched − Robust
IPTW −ATE 
IPTW −ATT 
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of treatment weight; ATE, average treatment effect; ATT, average treatment effect in the treated.
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Figure 6. Mean length of 95% confidence intervals (CIs) for marginal hazard ratios. IPTW, inverse probability
of treatment weight; ATE, average treatment effect; ATT, average treatment effect in the treated.
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Figure 7. Mean squared error of estimated log-hazard ratio. IPTW, inverse probability of treatment weight; ATE,
average treatment effect; ATT, average treatment effect in the treated.

Figure 7 presents the MSE of the estimated treatment effects. IPTW using the ATE weights is the
only method that allows one to estimate an ATE effect. Therefore, we do not compare the performance
of this method with that of the other methods, as the other methods are estimating a different quantity
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(the marginal effect of treatment in the treated population). However, we note that with the IPTW-ATE
approach, the MSE increased as the true marginal hazard ratio increased. Because the naïve Cox model
and the robust Cox model fits in the propensity-score-matched sample produce the same point estimate
of the log-hazard ratio, these two methods result in estimates with the same MSE. In all 21 of the sce-
narios, the IPTW (ATT weights) estimator had lower MSE than did the matched estimator. Across the
21 scenarios, the mean MSE of the matched estimates was 0.0023, whereas it was 0.0017 for the IPTW
(ATT) estimates. However, differences between these two approaches decreased as the proportion of
subjects that were treated increased.

4. Discussion

We conducted an extensive series of Monte Carlo simulations to examine the performance of different
propensity score methods to estimate marginal hazard ratios. We briefly summarize our findings and
place them in the context of the existing literature.

Greenland and others distinguished between measures of effect that are collapsible and those that
are non-collapsible [10]. A measure of effect is collapsible if, in the absence of confounding, the
conditional effect and the marginal effect coincide. Differences in means and risk differences are col-
lapsible, whereas odds ratios and hazard ratios are non-collapsible [10,11]. Neuhaus et al. demonstrated
that, in general, the marginal odds ratio will be closer to the null than the conditional effect [26]. Simi-
larly, Pocock et al. commented that in RCTs, the adjusted (i.e., conditional) odds ratio or hazard ratio will
be further from the null than the unadjusted (e.g., marginal) estimate [27]. Stratification on the propensity
score and covariate adjustment using the propensity score reduce bias when estimating linear treatment
effects [2], which are collapsible. The current study found that these methods do not perform well when
outcomes are time to event in nature and when the hazard ratio is used as the measure of effect. Both of
these methods resulted in biased estimation of the marginal hazard ratio. Furthermore, they also resulted
in biased estimation of the conditional hazard ratio that underlay the data-generating process. These two
methods are likely estimating a conditional effect; however, it is unclear which conditional effect it is. It
does not appear to be the conditional effect that would be obtained by specifying the outcome regression
model correctly and including the covariates that are predictive of the outcome.

When outcomes are time to event in nature, we can summarize the effect of treatment in at least three
ways: first, the hazard ratio describing the relative effect of the treatment on the hazard of the outcome;
second, the estimation of Kaplan–Meier survival curves in each treatment group, which allows for esti-
mating the absolute effect of treatment on the probability of the event occurring within any specified
duration of follow-up; third, mean or expected survival can be estimated in each treatment group, and
the effect of treatment on mean survival can be reported. Of these three methods, the first provides a
relative measure of effect, whereas the latter two provide absolute measures of effect. The first two
are the most common in reports of RCTs, whereas the latter is infrequently used in RCTs [5]. In the
current study, we have focused on the estimation of hazard ratios, in part, because of the frequency with
which they are reported in the medical literature. There are different ways in which survival curves can
be estimated and compared using propensity score methods. In a propensity-score-matched sample, we
can estimate Kaplan–Meier estimates of survival curves in each treatment group separately. We have
removed confounding by design: the distribution of baseline covariates will be similar between treated
and untreated subjects in the matched sample. Thus, the use of the ‘crude’ Kaplan–Meier estimator can
allow for an unbiased comparison of survival between treatment groups. Because of the lack of indepen-
dence between the two matched samples, the log-rank test should not be used for testing the equality of
the survival curves [28]. Both Cole and Hernan [29] and Xie and Liu [30] have described methods to
estimate survival curves in the sample weighted by the inverse of the probability of treatment. The per-
formance of different propensity score methods for estimating the latter two measures of effect should
be examined in subsequent research.

There are certain limitations to the current study. Our findings were based on an extensive series
of Monte Carlo simulations. As such, our findings warrant replication in different scenarios and under
different assumptions about the distribution of baseline covariates and about the number of measured
baseline covariates and their relationship with treatment selection and with outcome. However, given
our focus on estimating marginal hazard ratios, analytic determination of the performance of estimation
would be very difficult, particularly for the methods based on propensity score matching. Furthermore,
we would note that several prior studies examining the performance of propensity score methods for
estimating treatment effects have employed Monte Carlo simulations [6–9, 31, 32]. We speculate that
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our findings will generalize to other combinations of baseline covariates. A second limitation relates
to our focus on 1:1 matching on the propensity score, in which pairs of treated and untreated subjects
were formed. We did not consider M :1 matching in which M untreated subjects are matched to each
treated subject. M :1 matching was examined in a prior publication, in which it was found that, in many
scenarios, use of M D 1 or 2 tended to be optimal [33]. Increasing the number of untreated subjects
matched to each treated subject will, on average, tend to result in the matching of increasingly dissimilar
subjects. This can result in increased bias in the estimated treatment. However, there will tend to be a
commensurate increase in precision of the estimated treatment effect. In the current study, we found that
the robust matching approach and the IPTW (ATT weights) tended to result in estimates with comparable
bias. We speculate that matching multiple untreated subjects to each treated subjects would, on average,
result in increased bias compared with the weighted estimator. A third limitation is our inclusion of only
a single matching algorithm: greedy nearest-neighbor matching on the logit of the propensity score using
calipers defined by the variance of the logit of the propensity score. This approach was included as it has
been found to perform well compared with other commonly used alternatives [34]. However, we did not
examine other approaches such as optimal matching because of its increased computational complexity
[35]. It is possible that the use of optimal matching may result in improved performance of the matching
approach compared with the other propensity score approaches.

The findings of the current study complement those of previously published studies. Our examination
of the estimation of marginal hazard ratios using propensity score matching confirmed the observation
made in prior studies that variance estimation should account for the matched nature of the sample
[28, 36]. In particular, the use of a robust variance estimator resulted in estimates of standard error
that tended to better reflected the sampling distribution of the estimated log-hazard ratio than did the
use of naïve model-based standard errors from a maximum likelihood model that assumed indepen-
dent observations. In a recently published study, Gayat et al. examined the performance of different
implementations of propensity score matching and covariate adjustment using the propensity score
for estimating hazard ratios [37]. When using propensity-score matching, they examined a variety of
estimators in the propensity-score matched sample: a crude (unadjusted) estimator, a crude (stratified)
estimator, and an estimator that was adjusted for all of the measured covariates. Similar to the current
study, they found that, in the matched sample, it was preferable to use a robust variance estimator, rather
than the naïve variance estimator. The current study examined IPTW methods and stratification on the
propensity score, which were not considered in the study by Gayat et al. The conclusions of these two
studies differed in one respect: they found that the stratified matched approach and covariate adjustment
using the propensity score resulted in at most modest bias when estimating conditional hazard ratios
(i.e., relative biases of less than 10%), whereas we found larger biases when estimating conditional
hazard ratios. We speculate that are several potential explanations for these differences: first, in the
current simulations, covariates were generated from normal distributions, whereas in the paper by Gayat
et al., they were simulated from Bernoulli distributions. Second, while the earlier paper only considered
three hazard ratios, we considered seven hazard ratios in the current study. The fact that we observed
moderate biases when estimating conditional hazard ratios indicates that, in general, propensity score
methods result in biased estimation of the underlying conditional hazard ratio. However, the degree of
the bias will vary across different settings.

The finding that propensity-score methods result in confidence intervals whose empirical coverage
rates differ from the advertised levels warrants concern. This finding is similar to observations made in
an earlier study comparing different propensity score methods for estimating absolute risk reductions or
differences in proportions [9]. We speculate that the sub-optimal coverage rates are related to estimation
of the standard error of the estimated log-hazard ratio, rather than to bias in the estimated log-hazard
ratio. As illustrated in Figure 1, matching on the propensity score and IPTW result in at most minimal
bias in the estimation of the true log-hazard ratio. However, as illustrated in Figure 4, both methods result
in mis-estimation of the variance of the sampling distribution of the estimated log-hazard ratio. Since the
confidence interval is constructed using the estimated log-hazard ratio and the estimated standard error
of the log-hazard ratio, it appears likely that the sub-optimal coverage rates relates to the mis-estimation
of the standard error of the log-hazard ratio. Reasons for why this occur merit further investigation.
One avenue that warrants exploration is the use of estimated versus known propensity scores. Propen-
sity score methods rely on estimation of the propensity score. However, once the propensity score is
estimated, the analyst acts as though it was a known quantity, rather than an estimate of an unknown
quantity. Future research is required on methods for variance estimation that account for the fact that the
propensity score has been estimated.
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In summary, researchers should employ propensity score matching and inverse probability of treat-
ment weighting using the propensity score when estimating the relative effect of treatment on time-
to-event outcomes using observational or non-randomized data. Use of these methods allows for
estimation of the marginal effect of treatment on survival—the same metric that is reported in reports
of RCTs with time-to-event outcomes. An advantage to the use of IPTW using the propensity score is
that by using different weights, one can estimate both ATE and ATT. While both matching and IPTW
resulted in estimates of marginal hazard ratios with minimal bias, the latter approach resulted in esti-
mates with lower MSE, suggesting that the estimates resulting from weighted analyses have improved
precision than those resulting from matched analyses.
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